Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

نویسندگان

  • Sjoerd M. Bruijn
  • Jaap H. Van Dieën
  • Andreas Daffertshofer
چکیده

Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

It's how you get there: walking down a virtual alley activates premotor and parietal areas

Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE) feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a visual attention paradigm, in which vis...

متن کامل

Early and late consolidation and reconsolidation of memory in the prelimbic cortex

Rats can learn to forage among olfactory cues to associate one with reward in only 3 massed trials. The learning is achieved in less than 10 min and results in a memory trace lasting at least 1wk week. To study the neuro-anatomical circuits involved in the memory formation we used immunoreactivity to the immediate early gene c-fos as a marker for neuronal activity induced by the learning. The p...

متن کامل

sEMG Characteristics of the Lower Extremity Muscles During Walking in Mentally Retarded Adolescents

Purpose: Less attention has been paid to the electromyographic activity of the lower extremity muscles, which is considered as an essential part of the kinetic studies on the gait of mentally retarded individuals. Hence, the study aims at determining the surface electromyography characteristics of the lower extremity muscles of mentally retarded adolescents during walking. Methods: It is a cau...

متن کامل

Early and late consolidation and reconsolidation of memory in the prelimbic cortex

Rats can learn to forage among olfactory cues to associate one with reward in only 3 massed trials. The learning is achieved in less than 10 min and results in a memory trace lasting at least 1wk week. To study the neuro-anatomical circuits involved in the memory formation we used immunoreactivity to the immediate early gene c-fos as a marker for neuronal activity induced by the learning. The p...

متن کامل

Disruption of Locomotor Adaptation with Repetitive Transcranial Magnetic Stimulation Over the Motor Cortex.

Locomotor patterns are adapted on a trial-and-error basis to account for predictable dynamics. Once a walking pattern is adapted, the new calibration is stored and must be actively de-adapted. Here, we tested the hypothesis that storage of newly acquired ankle adaptation in walking is dependent on corticospinal mechanisms. Subjects were exposed to an elastic force that resisted ankle dorsiflexi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015